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ABSTRACT 

An investigation i s  made f elec ron behavior in 
a weakly ionized gas in  a magnetic field and an arbitrarily 
time-dependent electric field. This problem is of interest 
both in astrophysics and the study of the basic phenomena 
in gas discharge. The electron distribution function study 
is based on the Boltzmann equation, which takes only the 
electron-atom collisions into account. A “moment method” 
i s  devised to solve the case wherein the electron collision 
frequency is uniform. In the subsequent analysis, the 
electron distribution function is first expanded in terms 
of both the “moments” and the associated Laguerre poly- 
nomials; a generating equation of the moments i s  then 
derived. This generating equation, which is linear and of 
first order i n  time, can be integrated readily. 

The persistent solution is obtained i n  closed form 
for the quasisteady case. In the case of a high-frequency 
oscillating electric field, the drift velocity, the mean 
energy, the conductivity, and the dielectric constant are 
discussed. 

1. INTRODUCTION 

The present investigation concerns a slightly ionized gas in the presence of a uniform magnetic field and a 

time-dependent electrical field. The plasma is postulated to be homogeneous and, before the externd fields are 

imposed, to possess  Maxwellian distribution corresponding to the gas temperature T. The problem under study is the 

determination of the electron velocity distribution function of such a plasma, as well as the corresponding average 
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electron energy and drift velocity. The Boltzmann equation for the present problem may be simplified by dropping 

the collision integrals describing the electron-electron and electron-ion encounters. In the following discussion, 

only the electron-atom collisions, for which the “conventional” close binary collision model may be assumed valid, 

are considered. Again, i t  is assumed that most of the collisions are elastic. This  implies that the average electron 

energy is low and the external field i s  not very strong. 

In the following analysis the fields generated by the internal distributions and motions of the charged 

particles are postulated to be negligible compared to the applied fields. Hence in the Boltzmann equation both E 

and B are considered to be known quantities, and hereafter we will write the electric field E in the following form: 

where 6(t) is any given function of time which is bounded and continuous at  all time. 

With the initial Maxwellian distribution we may obtain a solution for the subsequent time ( t  > 0)  based on 

the assumption that the anisotropic part of the distribution function i s  a s m a l l  perturbation of the isotropic distri- 

bution. In the following discussion a “moment method,” which will be demonstrated later, i s  used. The main 

interest i s  to investigate the “persistent solution” (t >> r ,  where r is the mean collision time). A closed form 

solution for the quasisteady case (or some other special cases, e.g., the ac field) can be found by considering the 

asymptotic behavior of the distribution function. The analysis of this part i s  displayed in Section IV. The calcu- 

lations for the electron drift velocity, mean energy, conductivity, and dielectric constant based on the “moments” 

are given in Section V. 

2 
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I I .  DEDUCTION OF THE GOVERNING INTEGRO-DIFFERENTIAL EQUATION 

Under the assumptions stated previously, the electron distribution function f (v, t) i s  considered to satisfy 

the Boltmann equation of the following form (Chapman and Cowling 1952): 

L J 

In (l), the primes denote quantities after collisions, and urn (g, $) is  the differential cross section for elastic 

scattering of t lectron and neutral particles through an angle $. The solid angle dR may be expressed in the form 

where c$ is the polar angle measured in a plane normal to the vector g, which is the velocity of the electron relative 

to the colliding atom, i.e., 

vm g = v -  

Furthermore, the subscript rn denotes quantities which belong to the neutral atoms. 

In order to solve (1) for f (v, t ) ,  we shall postulate that the electron distribution function may be written in the 

following form: 

The initial conditions of the unknown functions f('), f('), f('), and f3 )  may be given as follows: 

f'3'(,,0) = 0 

where N is the electron number density and k is the Boltmann constant. 

3 
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The expression (2) i s  merely the first two terms of the expansion of f ( v ,  t )  in terms of the spherical harmonic in the 

component of v. A brief discussion of this expression is given by Wu (1%1), from which we obtain 

a t  1 m l v  a v  I 

where m and M are the electronic and atomic m a s s  respectively, 1 the mean free path of electrons, and y the angle 

between the field vectors B and Eo.  

Now we shall introduce the Laplace transform 

where s i s  the variable in the transformed space and has the property Re [SI > 0 .  

Using the initial conditions (3), we may transform (5), (6), and (7) to the following forms 

4 



JPL Technical Report No. 32-102 

where L [( afco)/  a v ) + ]  denotes the Laplace transform of (a{(')/ a v ) # ( t )  end, for simplicity, we have denoted 

Z/v = 7, where 7 is the collision t ime and, in general, is a function of v. 

From (9, (1O),and (11) we obtain 

where w = ( e B / m )  is the electron cyclotron frequency. From (12) and (14), one may easily showthat  

where Y = 1/7 

Combining (15) and (4, we obtain an integro-differential equation for f(') for t 0. 

M L  

For simplicity hereafter we denote 

V 
a = -  

4 
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Then (16) becomes 

Two points should be remarked before this section i s  concluded: 

g(u, t ) .  

Hence 

1. I t  i s  possible to derive a general expression of the distribution function f (v ,  t )  in terms of f C 0 ) ( u ,  t )  or 

From (12), (13), and (14), we may obtain the inverse transform as follows: 

-0 mu 

(19) 

Therefore, once g(u ,  t )  i s  known, the distribution function f (v, t )  may be immediately calculated from (21). 

6 
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2. The asymptotic expression of f (v, t )  a s  t + may be obtained by showing, from Eq. (18), that: 

ev t  mau 

+ = -  

2 mau e(v-io)t e( v+io)t 

m 
k +1 

(1) = - e (-Uk - a k  ( -  m ( t )  Re (L) fm 
atk U +  iw 2 ma u 

k = O  

where gm(t) represents the behavior of g a s  t + 0. Similarly, from (19) and (a): 

r 
Hence 

7 
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111. METHOD OF SOLUTION 

A. Expansion of the Function g ( v ,  t )  

In  an attempt to solve (17), w e  shall devise a method which contains two essential  steps: (1) expanding the 

function g(u ,  t) in terms of i ts  moments as defined in the following: 

and (2) then deriving the “generating equation” for these moments. 

First, we shall expand the function g ( u ,  t) i n  terms of the Laguerre polynomial 

m 

where A i s  a parameter which may be a function of t .  The determination of A ( t )  will be discussed later. 

The Laguerre polynomial I!,? i s  defined (Magnus and Oberhettinger 1954) as 

The reason for choosing the Laguerre polynomial of order 1 / 2  is based mainly on i t s  orthogonality property. 

The discussion of this choice may be found in an Appendix, in which i t  has  also been shown that the coefficients 

ak may be expressed in terms of the moments: 

k 
v 

The choice of A will be based on the criterion that the fastest  convergence of (27)  may be obtained. 

8 
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To illustrate this, we consider the special case at t = 0. Since 

2 
g b ,  0) = e -A2u2 2 uk (A, 0) LF (A2 u 2 )  = N ( f i  e-" 

k = O  

l it may be shown that 

Therefore, 

Letting A = 1, we have the first term only. This implies that the fastest  convergence may be achieved if A = 1. How- 

ever, when t # l this is no longer true, as will be shown in Section IV. 

B. The Moment Equations 

In order to determine the moments, we shall return to (17). In the following discussion, we shall restrict our- 

selves  to the case that Y is uniform; in some cases  this furnishes a good approximation for weakly ionized gas  

(Delcroix 1%0). In this case, if each term of (17) i s  multiplied by uZnt2  and integrated over all values of u, we obtain 

a system of integro-differential-difference equations which may be written as follows: 

1 

2 
x [cos 2 ')' + sin 2 "cos  a(t - t ' ) ]  + ( t ' ) M 2 n ( t ' ) d t '  + - 

9 
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Since, by definition, 

we may therefore proceed to calculate the higher moments M2,  M,, etc. ,  by integrating (32). At this point, in princi- 

ple, the problem i s  solved. 

In closing this section, we may remark that i t  i s  possible to express the distribution function f ( v ,  t )  in 

terms of the moments, 

m k -  

where 

2 

2 2  

e e 

m a  m o  
- u) cos w ( t  - t ' )  + - (B x Eo) - u sin ~ ( t  - t ' )  + - ( B E ,  COS y)(B - ~ ) ( l -  COS w ( t  - t ') 
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IV. PERSISTENT SOLUTIONS IN THE CASE OF UNIFORM COLLISION FREQUENCY 

I t  i s  seen from the previous discussion that considerable mathematical simplification may be obtained if the 

collision frequency may be considered to be independent of u. From (32) ,  w e  may obtain by integration 

wb ere 

In (35)  the integration constant M2n+2(0) may easily be evaluated: 

If we denote cn(t) as the asymptotic form of M 2 , ( t ) ,  i.e., M 2 , ( t )  - Myn(t), then we have 
t -r  m 

( 2 n  + 2 ) ( 2 n  + 3 ) e 2 E ;  +(t) 

6 mkT 

O0 

a;n = 1 ( - 1 ) P  

p = o  

Possible further simplifications of (37)  and (38) may be found for the following special cases: 

11 
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A. Quasisteady Case 

The quasisteady case i s  defined when the following conditions hold true 

k = 1, 2, 3,  

where +(k) and 

that the changes of the functions 4 and M n  for the time interval T ( =  l / ~ )  are small compared to the values of the 

functions. This situation enables u s  to rewrite (37)  and (38)  as follows: 

denote the derivatives of 4 and M,,, respectively. The physical meaning of these conditions i s  

If we further introduce 

. . . . .  

one may deduce from (39), (40), and (41) that 

sin y ) + l  
2 2  3m EkT v + w  

where 

M F *  = M,*(O)  = (\T;fu)-' 

12 

n +1 

Mo"* (42) 
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Hence, the asymptotic form of g(u,  t )  for large time may be given in a rather simple form: 

where 

It i s  clear that the optimum choise of A m  i s  

Then 

because 

As a consequence, 

With the substitution of (44) and (45) into (Z), the persistent solution of f (u, t )  is found. 

B. Hi gh-Frequency Osci I I ati ng Fie1 d 

The second special case for which (37) and (38) may be simplified is that the electric field E varies according 

to a time function + ( t )  = e iB t .  In this case, the approximation used previously i s  no longer valid if the frequency p 
is of the same order of V. However, simplification is still possible, since sometimes we need only the information of 

Mo and M2 . To illustrate this point, discussions are given in the following section. 

i 
I 

, 

13 



IPL Technical Report No. 32-102 

V. APPLICATIONS 

The distribution function f (v, t), discussed previously, takes a rather complicated form. From a practical 

point of view this is not desirable. However, it  should be  noted that, in the calculation of the ensemble average of 

certain physical quantities (such as energy or velocity) it  i s  really not necessary to first obtain the distribution 

function. Most of the calculations may be accomplished by direct considerations of the “moment.” To demonstrate 

this, we shall  consider the following examples. 1 

A. Electron Drift Velocity 

By definition 

Since 

we thus have 

‘The discussion i s  still restricted to the assumption of uniform V .  

14 
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This implies that, for any given function @ ( t ) ,  the drift velocity may be readily computed. It should be 

remarked that if v i s  not independent of u, (47) is ,  of course, not valid and should be modified to the form 

2 e 

2 2  m w  
+ - (B - Eo)B [l - C O S  w ( t  - t ‘ ) ]  

The calculation of electron current density J = -en < v > for the case @ = cos P t  has been performed based on (47). 

For simplicity, w e  only l is t  the results of the “persistent” part (large time, t >> l/~) 

where I,, , 12- ,  and .13m are the three components of the current density 

Fig. 1. The total current J i s  therefore 

in the coordinate system specified in 

J = I,i, + J2i2 + 13i3 

where, furthermore, J may be considered as the sum of conduction and polarization currents. In other words (Stratton 

1941) 

ap 

at 
Jm = Je + - 

15 
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Y 

1 

Fig. 1. Coordinates for the electron current density 
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where P is the polarization vector of the plasma 

P D - eOE 

eo being the dielectric constant in free space. In the most general case the actual dielectric constant E is expected 

to be a tensor; we may therefore write 

Pi ( E i k  - E O  6ik)  E ,  

where 8 i k  is the Kronecker delta. 

Postulating that eik is independent of time, we have 

2Pi aEk 
- = (Eik  - E 6 .  ) - 0 zk 

at at 

for 4 = cos f i t  

Hence 

r 1 

If the Z, y, z system shown in Fig. 1 is used, then the tensorial conductivity and dielectric constant may be 

computed by comparing (52) with (49), (N), and (51), with the following results: 

17 
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Th 

B. 

1. Conductivity 

1 1 1 

r w - P  P + w  1 

2. Dielectric constant 

4 r Y Y 1 

se  results agree with those given by Margenau (1946), Kelly (1960), and Ginzburg (1953). 

Electron Mean Energy 

The mean electron energy may be expressed in terms of the second moment, since 

2 r r m  - r rm 
J fcO) (v ,  t )  v4 dv = - M F  ( t )  

1 
- m < v  > = -  

N 0 
2 N 

However, from (37) and (38): 

18 
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and 

In the following, we shall consider the example = cos P t .  The mean electron energy in this case may be 

determined by first finding M Y  ( t ) .  Since it can be readily shown that 

+ 

L 

1 

2 
+ -  

cos 2 P t  + P2 sin 2 P t ) ]  
2 E U  ( € 2 2  + p 2  E 2 U 2  + p 2  

P x cos  Pt  + - cos Pt  sin Pt  - - 
EU 

r 2  

and 

N 
M ,  = 

3/2 

2rr (-=) 

19 
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we obtain 

(v+ iw)' + ~2 

V 2 1 
- m .<v > = 
2 2 m 2  { l o s 2  y ( v2  + + sin2 y Re ( 

x cos pt - - cos 2pt - E 2  V 2  sin 2Pt)] + r' 2 E V  ( E 2 V 2  p E v  +p2  € 2 9  + p2 
L 

x y 

For the limiting case as P -+ O 

2 1 
- m < v  > =  
2 2 

This result agrees with that obtained previously (Wu 1%1). 
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VI. DISCUSSION 

In the discussion of the “persistent” solution, we have implicitly assumed that the time function 4(t)  and 

i t s  derivatives are continuous and bounded. This  causes certain limitations to the application of the results. However, 

if one uses  (35) instead of (37) and (38), the derivatives of the function +( t )  do not have to be continuous and 

bounded. 

The discussion of the parameter A, which appears in the expansion (27),is given for the quasisteady case. 

For large time ( t  >> T ) ,  i t  has  been shown that, if w e  take 

the best convergence may be obtained. Although the expression of hoo(t) which may give a similar result st i l l  

remains unknown, for the general case i t  is yet conceivable that (58) may be used to obtain good convergence of (27). 

It may be remarked in closing that, for p + 0, the drift velocity calculated by the present method agrees 

with the solution obtained from a generalized Spitzer’s equation (Zmuidzinas and Wu 1960). as expected. 

21 
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APPENDIX 

Expansion of the Function g ( u ,  t )  

Because the function g ( u ,  t )  is expected to have “Gaussian type” behavior, we  propose the following 

expansion 

(A-1) 
u 

k = O  

where A is an arbitrary parameter discussed in the paper, L k  Q (A 2 2  u ) (k = 1, 2, ... ) are the associated Laguerre poly- 

nomials in which a is to be determined, and ak (a, t )  are the expansion coefficients. 

In an attempt to determine the value of u for the proper expansion, w e  consider the following integral 

00 

I I 
0 

g (u,  t )  L t  I (A2u2) (A2u2) a 2 A2u du 

W 

= e-A2u2 X ak (A, t )  L;(A2u2) L l  (A2u2) (A2u2) (A2u2) 
0 k = O  

However, from the definition of the Laguerre polynomial, the integral I may also be written as 

(A-2) 

(A- 3) 

(A-4) 
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It may be visualized that if we s e t  a = 1/2 

(A-5) 

This enables u s  to express the coefficients ak in terms of the moments: 

k 

23 
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